Rescaled bipartite planar maps converge to the Brownian map
نویسندگان
چکیده
منابع مشابه
Geodesics in Large Planar Maps and in the Brownian Map
We study geodesics in the random metric space called the Brownian map, which appears as the scaling limit of large planar maps. In particular, we completely describe geodesics starting from the distinguished point called the root, and we characterize the set of all points that are connected to the root by more than one geodesic. We also prove that points of the Brownian map can be connected to ...
متن کاملRecurrence of bipartite planar maps ∗
This paper concerns random bipartite planar maps which are defined by assigning weights to their faces. The paper presents a threefold contribution to the theory. Firstly, we prove the existence of the local limit for all choices of weights and describe it in terms of an infinite mobile. Secondly, we show that the local limit is in all cases almost surely recurrent. And thirdly, we show that fo...
متن کاملScaling Limits of Random Planar Maps with a Unique Large Face
We study random bipartite planar maps defined by assigning non-negative weights to each face of a map. We proof that for certain choices of weights a unique large face, having degree proportional to the total number of edges in the maps, appears when the maps are large. It is furthermore shown that as the number of edges n of the planar maps goes to infinity, the profile of distances to a marke...
متن کاملScaling Limits of Random Planar Maps with a Unique Large Face1 by Svante Janson
We study random bipartite planar maps defined by assigning nonnegative weights to each face of a map. We prove that for certain choices of weights a unique large face, having degree proportional to the total number of edges in the maps, appears when the maps are large. It is furthermore shown that as the number of edges n of the planar maps goes to infinity, the profile of distances to a marked...
متن کاملInvariance Principles for Planar Maps 3
Random planar maps are considered in the physics literature as the discrete counterpart of random surfaces. It is conjectured that properly rescaled random planar maps, when conditioned to have a large number of faces, should converge to a limiting surface whose law does not depend, up to scaling factors, on details of the class of maps that are sampled. Previous works on the topic, starting wi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales de l'Institut Henri Poincaré, Probabilités et Statistiques
سال: 2016
ISSN: 0246-0203
DOI: 10.1214/14-aihp657